Hidden Markov Models for Evolution and Comparative Genomics Analysis
نویسندگان
چکیده
The problem of reconstruction of ancestral states given a phylogeny and data from extant species arises in a wide range of biological studies. The continuous-time Markov model for the discrete states evolution is generally used for the reconstruction of ancestral states. We modify this model to account for a case when the states of the extant species are uncertain. This situation appears, for example, if the states for extant species are predicted by some program and thus are known only with some level of reliability; it is common for bioinformatics field. The main idea is formulation of the problem as a hidden Markov model on a tree (tree HMM, tHMM), where the basic continuous-time Markov model is expanded with the introduction of emission probabilities of observed data (e.g. prediction scores) for each underlying discrete state. Our tHMM decoding algorithm allows us to predict states at the ancestral nodes as well as to refine states at the leaves on the basis of quantitative comparative genomics. The test on the simulated data shows that the tHMM approach applied to the continuous variable reflecting the probabilities of the states (i.e. prediction score) appears to be more accurate then the reconstruction from the discrete states assignment defined by the best score threshold. We provide examples of applying our model to the evolutionary analysis of N-terminal signal peptides and transcription factor binding sites in bacteria. The program is freely available at http://bioinf.fbb.msu.ru/~nadya/tHMM and via web-service at http://bioinf.fbb.msu.ru/treehmmweb.
منابع مشابه
Applications of hidden Markov models for comparative gene structure prediction
Identifying the structure in genome sequences is one of the principal challenges in modern molecular biology, and comparative genomics offers a powerful tool. In this paper we introduce a hidden Markov model that allows a comparative analysis of multiple sequences related by a phylogenetic tree. The model integrates structure prediction methods for one sequence, statistical multiple alignment m...
متن کاملPackage 'rphast' Title R Interface to Phast Software for Comparative Genomics
December 13, 2013 Copyright The code in src/pcre is Copyright (c) 1997-2010 University of Cambridge. All other code is Copyright (c) 2002-2010 University of California, Cornell University. Maintainer Melissa Hubisz License BSD_3_clause + file LICENSE Title R interface to PHAST software for comparative genomics Author Melissa Hubisz, Katherine Pollard, and Adam Siepel Desc...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملSpecialized Hidden Markov Model Databases for Microbial Genomics
As hidden Markov models (HMMs) become increasingly more important in the analysis of biological sequences, so too have databases of HMMs expanded in size, number and importance. While the standard paradigm a short while ago was the analysis of one or a few sequences at a time, it has now become standard procedure to submit an entire microbial genome. In the future, it will be common to submit l...
متن کاملApplications of Hidden Markov Models for Characterization of Homologous DNA Sequences with a Common Gene
Identifying and characterizing the structure in genome sequences is one of the principal challenges in modern molecular biology, and comparative genomics offers a powerful tool. In this paper, we introduce a hidden Markov model that allows a comparative analysis of multiple sequences related by a phylogenetic tree, and we present an efficient method for estimating the parameters of the model. T...
متن کامل